Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81.295
Filtrar
1.
J Hazard Mater ; 470: 134113, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38565021

RESUMEN

Photo-induced degradation of dimethylmercury (DMHg) is considered to be an important source for the generation of methylmercury (MMHg). However, studies on DMHg photodegradation are scarce, and it is even debatable about whether DMHg can be degraded in natural waters. Herein, we found that both DMHg and MMHg could be photodegraded in three natural waters collected from the Yellow River Delta, while in pure water only DMHg photodegradation occurred under visible light irradiation. The effects of different environmental factors on DMHg photodegradation were investigated, and the underlying mechanisms were elucidated by density functional theory calculations and a series of control experiments. Our findings revealed that the DMHg degradation rate was higher in the tidal creek water compared to Yellow River, Yan Lake, and purified water. NO3-, NO2-, and DOM could promote the photodegradation with DOM and NO3- showing particularly strong positive effects. Different light sources were employed, and UV light was found to be more effective in DMHg photodegradation. Moreover, MMHg was detected during the photodegradation of DMHg, confirming that the photochemical demethylation of DMHg is a source of MMHg in sunlit water. This work may provide a novel mechanistic insight into the DMHg photodegradation in natural waters and enrich the study of the global biogeochemical cycle of Hg.


Asunto(s)
Compuestos de Metilmercurio , Fotólisis , Contaminantes Químicos del Agua , Compuestos de Metilmercurio/química , Compuestos de Metilmercurio/análisis , Compuestos de Metilmercurio/efectos de la radiación , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/efectos de la radiación , Contaminantes Químicos del Agua/análisis , Luz , Rayos Ultravioleta , Nitratos/química , Nitratos/análisis , Ríos/química
2.
Luminescence ; 39(4): e4746, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38644460

RESUMEN

The use of photochromism to increase the credibility of consumer goods has shown great promise. To provide mechanically dependable anticounterfeiting nanofibres, it has also been critical to improve the engineering processes of authentication patterns. Mechanically robust and photoluminescent electrospun poly(ethylene oxide)/glass (PGLS) nanofibres (150-350 nm) immobilized with nanoparticles of lanthanide-doped aluminate (NLA; 8-15 nm) were developed using electrospinning technology for anticounterfeiting purposes. The provided nanofibrous membranes changed colour from transparent to green when irradiated with ultraviolet light. By delivering NLA with homogeneous distribution without aggregations, we were able to keep the nanofibrous membrane transparent. When excited at 365 nm, NLA@PGLS nanofibres showed an emission intensity at 517 nm. The hydrophobicity of NLA@PGLS nanofibres improved by raising the pigment concentration as the contact angle was increased from 146.4° to 160.3°. After being triggered by ultraviolet light, NLA@PGLS showed quick and reversible photochromism without fatigue. It was shown that the suggested method can be applied to reliably produce various anticounterfeiting materials.


Asunto(s)
Vidrio , Nanofibras , Polietilenglicoles , Rayos Ultravioleta , Nanofibras/química , Polietilenglicoles/química , Vidrio/química , Tamaño de la Partícula , Propiedades de Superficie
3.
Glob Chang Biol ; 30(4): e17283, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38663017

RESUMEN

Stratospheric ozone, which has been depleted in recent decades by the release of anthropogenic gases, is critical for shielding the biosphere against ultraviolet-B (UV-B) radiation. Although the ozone layer is expected to recover before the end of the 21st century, a hole over Antarctica continues to appear each year. Ozone depletion usually peaks between September and October, when fortunately, most Antarctic terrestrial vegetation and soil biota is frozen, dormant and protected under snow cover. Similarly, much marine life is protected by sea ice cover. The ozone hole used to close before the onset of Antarctic summer, meaning that most biota were not exposed to severe springtime UV-B fluxes. However, in recent years, ozone depletion has persisted into December, which marks the beginning of austral summer. Early summertime ozone depletion is concerning: high incident UV-B radiation coincident with snowmelt and emergence of vegetation will mean biota is more exposed. The start of summer is also peak breeding season for many animals, thus extreme UV-B exposure (UV index up to 14) may come at a vulnerable time in their life cycle. Climate change, including changing wind patterns and strength, and particularly declining sea ice, are likely to compound UV-B exposure of Antarctic organisms, through earlier ice and snowmelt, heatwaves and droughts. Antarctic field research conducted decades ago tended to study UV impacts in isolation and more research that considers multiple climate impacts, and the true magnitude and timing of current UV increases is needed.


Asunto(s)
Biota , Cambio Climático , Cubierta de Hielo , Pérdida de Ozono , Nieve , Regiones Antárticas , Animales , Rayos Ultravioleta , Estaciones del Año , Ozono Estratosférico/análisis
4.
BMC Cancer ; 24(1): 477, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38622563

RESUMEN

BACKGROUND: Limited evidence exists on the population attributable fraction (PAF) of cancer cases and deaths in Latin America. In Peru several studies have been published regarding the PAF of various risk factors and their associated diseases. The objective of this study was to estimate the fraction of cancer cases and deaths attributable to potentially modifiable risk factors in Peru in 2018, before the COVID-19 pandemic in the population of 15 years old and older. METHODS: An ecological study was conducted using the prevalence of exposure of the Peruvian population to modifiable risk factors for cancer, the relative risk associated with each factor, and the number of cancer cases and deaths in 2018 as inputs. We used the Parkin formula with a Montecarlo statistical simulation model to calculate the PAF and confidence intervals. The number of new cancer cases and deaths attributed to each risk factor was determined by multiplying the number of cases and deaths in each gender by the PAF of each risk factor. FINDINGS: In Peru, 38.5% of new cases (34.5% in men and 42% in women) and 43.4% of cancer-related deaths (43.4% in men and 43.4% in women) were attributable to modifiable risk factors. The number of cancers attributable was 25,308 (10,439 in men and 14,869 in women) and the number of deaths attributable to cancer was 14,839 (6,953 in men and 7,886 in women). The predominant modifiable risk factors contributing to the highest number of cases and deaths were HPV infection (4,563 cases, 2,409 deaths), current tobacco use (3,348 cases, 2,180 deaths), and helicobacter pylori infection (2,677 cases, 1,873 deaths). Among the risk factors, oncogenic infections constituted the group with the highest PAF (16.6% for cases, 19.2% for deaths) followed by other unhealthy lifestyle factors (14.2% for cases, 16.7% for deaths), tobacco (7.2% for cases, 7.2% for deaths) and ultraviolet radiation (0.5% for cases, 0.3% for deaths). CONCLUSIONS: Prior to the COVID-19 pandemic, 38.5% of cancer cases and 43.4% of cancer-related deaths in Peru were linked to modifiable risk factors in the population of 15 years old and older. Most preventable cancer cases and deaths were related to oncogenic infections, primarily caused by HPV and helicobacter pylori, followed by tobacco and obesity.


Asunto(s)
COVID-19 , Infecciones por Helicobacter , Helicobacter pylori , Neoplasias , Infecciones por Papillomavirus , Masculino , Humanos , Femenino , Adolescente , Perú/epidemiología , Rayos Ultravioleta , Infecciones por Helicobacter/complicaciones , Pandemias , Factores de Riesgo , Neoplasias/epidemiología , Neoplasias/etiología , COVID-19/epidemiología , COVID-19/complicaciones , Infecciones por Papillomavirus/complicaciones , Infecciones por Papillomavirus/epidemiología
5.
Sci Rep ; 14(1): 9440, 2024 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-38658799

RESUMEN

Although previous studies have examined the signaling pathway involved in melanogenesis through which ultraviolet (UV) or α-melanocyte-stimulating hormones (α-MSH) stimuli act as key inducers to produce melanin at the stratum basal layer of the epidermis, the signaling pathway regulating melanogenesis is still controversial. This study reports that α-MSH, not UVA and UVB, acted as a major stimulus of melanogenesis in B16F10 melanoma cells. Signaling pathway analysis using gene knockdown technology and chemical inhibitors, the mitogen-activated protein kinase kinase (MEK)/extracellular signal-regulated kinase (ERK)/p90 ribosomal S6 kinase 2 (RSK2) played an important role in melanogenesis. Unexpectedly, LY294002, a PI3K inhibitor, increased melanogenesis without UV or α-MSH stimulation, suggesting that the PI3K/AKT signaling pathway may not be a major signaling pathway for melanogenesis. Chemical inhibition of the MEKs/ERKs/RSK2 signaling pathway using U0126 or BI-D1870 suppressed melanogenesis by stimulation of UVA or α-MSH stimulation, or both. In particular, the genetic depletion of RSK2 or constitutive active (CA)-RSK2 overexpression showed that RSK2 plays a key role in melanogenesis. Interestingly, forkhead box protein O4 (FOXO4) was phosphorylated by RSK2, resulting in the increase of FOXO4's transactivation activity. Notably, the FOXO4 mutant harboring serine-to-alanine replacement at the phosphorylation sites totally abrogated the transactivation activity and reduced melanin production, indicating that RSK2-mediated FOXO4 activity plays a key role in melanogenesis. Furthermore, kaempferol, a flavonoid inhibiting the RSK2 activity, suppressed melanogenesis. In addition, FOXO4-wt overexpression showed that FOXO4 enhance melanin synthesis. Overall, the RSK2-FOXO4 signaling pathway plays a key role in modulating melanogenesis.


Asunto(s)
Melaninas , Pteridinas , Proteínas Quinasas S6 Ribosómicas 90-kDa , Transducción de Señal , alfa-MSH , Proteínas Quinasas S6 Ribosómicas 90-kDa/metabolismo , Proteínas Quinasas S6 Ribosómicas 90-kDa/genética , Melaninas/biosíntesis , Melaninas/metabolismo , Animales , alfa-MSH/metabolismo , alfa-MSH/farmacología , Ratones , Línea Celular Tumoral , Factores de Transcripción Forkhead/metabolismo , Factores de Transcripción Forkhead/genética , Rayos Ultravioleta , Morfolinas/farmacología , Cromonas/farmacología , Nitrilos/farmacología , Butadienos/farmacología , Fosfatidilinositol 3-Quinasas/metabolismo , Fosforilación , Melanoma Experimental/metabolismo , 60451
6.
Front Immunol ; 15: 1384606, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38660315

RESUMEN

Introduction: Ultraviolet (UV) light is a known trigger of both cutaneous and systemic disease manifestations in lupus patients. Lupus skin has elevated expression of type I interferons (IFNs) that promote increased keratinocyte (KC) death after UV exposure. The mechanisms by which KC cell death is increased by type I IFNs are unknown. Methods: Here, we examine the specific cell death pathways that are activated in KCs by type I IFN priming and UVB exposure using a variety of pharmacological and genetic approaches. Mice that overexpress Ifnk in the epidermis were exposed to UVB light and cell death was measured. RNA-sequencing from IFN-treated KCs was analyzed to identify candidate genes for further analysis that could drive enhanced cell death responses after UVB exposure. Results: We identify enhanced activation of caspase-8 dependent apoptosis, but not other cell death pathways, in type I IFN and UVB-exposed KCs. In vivo, overexpression of epidermal Ifnk resulted in increased apoptosis in murine skin after UVB treatment. This increase in KC apoptosis was not dependent on known death ligands but rather dependent on type I IFN-upregulation of interferon regulatory factor 1 (IRF1). Discussion: These data suggest that enhanced sensitivity to UV light exhibited by lupus patients results from type I IFN priming of KCs that drives IRF1 expression resulting in caspase-8 activation and increased apoptosis after minimal exposures to UVB.


Asunto(s)
Apoptosis , Caspasa 8 , Factor 1 Regulador del Interferón , Queratinocitos , Rayos Ultravioleta , Rayos Ultravioleta/efectos adversos , Queratinocitos/metabolismo , Caspasa 8/metabolismo , Caspasa 8/genética , Animales , Ratones , Factor 1 Regulador del Interferón/metabolismo , Factor 1 Regulador del Interferón/genética , Humanos , Interferón-alfa/metabolismo , Ratones Endogámicos C57BL
7.
Cells ; 13(8)2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38667311

RESUMEN

Actin is a protein of central importance to many cellular functions. Its localization and activity are regulated by interactions with a high number of actin-binding proteins. In a yeast two-hybrid (Y2H) screening system, snail family transcriptional repressor 2 (SNAI2 or slug) was identified as a yet unknown potential actin-binding protein. We validated this interaction using immunoprecipitation and analyzed the functional relation between slug and actin. Since both proteins have been reported to be involved in DNA double-strand break (DSB) repair, we focused on their interaction during this process after treatment with doxorubicin or UV irradiation. Confocal microscopy elicits that the overexpression of actin fused to an NLS stabilizes complexes of slug and γH2AX, an early marker of DNA damage repair.


Asunto(s)
Actinas , Unión Proteica , Factores de Transcripción de la Familia Snail , Factores de Transcripción de la Familia Snail/metabolismo , Factores de Transcripción de la Familia Snail/genética , Actinas/metabolismo , Humanos , Núcleo Celular/metabolismo , Histonas/metabolismo , Técnicas del Sistema de Dos Híbridos , Reparación del ADN , Doxorrubicina/farmacología , Roturas del ADN de Doble Cadena , Rayos Ultravioleta , Animales
8.
Sci Total Environ ; 926: 172122, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38569973

RESUMEN

Photodegradation via ultraviolet (UV) radiation is an important factor driving plant litter decomposition. Despite increasing attention to the role of UV photodegradation in litter decomposition, the specific impact of UV radiation on the plant litter decomposition stage within biogeochemical cycles remains unclear at regional and global scales. To clarify the variation rules of magnitude of UV effect on plant litter decomposition and their regulatory factors, we conducted a meta-analysis based on 54 published papers. Our results indicated that UV significantly promoted the mass loss of litter by facilitating decay of carbonaceous fractions and release of nitrogen and phosphorus. The promotion effect varied linearly or non-linearly with the time that litter exposed to UV, and with climatic factors. The UV effect on litter decomposition decreased first than increased on precipitation and temperature gradients, reaching its minimum in the area with a precipitation of 400-600 mm, and a temperature of 15-20 °C. This trend might be attributed to a potential equilibrium between the photofacilitation and photo-inhibition effects of UV under this condition. This variation in UV effect on precipitation gradient was in agreement with the fact that UV photodegradation effect was weakest in grassland ecosystems compared to that in forest and desert ecosystems. In addition, initial litter quality significantly influenced the magnitude of UV effect, but had no influence on the correlation between UV effect and climate gradient. Litter with lower initial nitrogen and lignin content shown a greater photodegradation effect, whereas those with higher hemicellulose and cellulose content had a greater photodegradation effect. Our study provides a comprehensive understanding of photodegradation effect on plant litter decomposition, indicates potentially substantial impacts of global enhancements of litter decomposition by UV, and highlights the necessity to quantify the contribution of photochemical minerallization pathway and microbial degradation pathway in litter decomposition.


Asunto(s)
Ecosistema , Rayos Ultravioleta , Hojas de la Planta/metabolismo , Plantas/metabolismo , Clima Desértico , Nitrógeno/metabolismo
9.
Artículo en Inglés | MEDLINE | ID: mdl-38619314

RESUMEN

The photocatalytic degradation process of sulfamethoxazole (SMX) using ZnO in aquatic systems has been systematically studied by varying initial SMX concentration from 0 to 15 mgL-1, ZnO dosage from 0 to 4 gL-1 and UV light intensity at the light source from 0 to 18 W(m-lamp length)-1 at natural pH. Almost complete degradations of SMX were achieved within 120 min for the initial SMX concentration ≤15 mgL-1 with ZnO dosage of 3 gL-1 and UV light intensity of 18 W(m-lamp length)-1. The photocatalytic degradation process was found to be interacted with the dissolved oxygen (DO) consumption. With oxygen supply through the gas-liquid free-surface, the DO concentration decreased significantly in the initial SMX degradation phase and increased asymptotically to the saturated DO concentration after achieving about 80% SMX degradation. The change in DO concentration was probably controlled by the oxygen consumption in the formation of oxygenated radical intermediates. A novel dynamic kinetic model based on the fundamental reactions of photocatalysis and the formation of oxygenated radical intermediates was developed. In the modeling the dynamic concentration profiles of OH radical and DO are considered. The dynamics of SMX degradation process by ZnO was simulated reasonably by the proposed model.


Asunto(s)
Contaminantes Químicos del Agua , Óxido de Zinc , Sulfametoxazol , Antibacterianos/química , Óxido de Zinc/química , Oxígeno/química , Rayos Ultravioleta , Contaminantes Químicos del Agua/química
10.
J Photochem Photobiol B ; 254: 112902, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38569457

RESUMEN

The effect of low artificial Ultraviolet (UV) on the DNA methylation remains controversial. This study addresses how differential photoperiods of UV radiation affect the biochemical and molecular behaviors of Cannabis indica cell suspension cultures. The cell suspensions were illuminated with the compact fluorescent lamps (CFL), emitting a combination of 10% UVB, 30% UVA, and the rest visible wavelengths for 0, 4, 8, and 16 h. The applied photoperiods influenced cell morphological characteristics. The 4 h photoperiod was the most effective treatment for improving biomass, growth index and cell viability percentage while these indices remained non-significant in the 16 h treatment. The methylation-sensitive amplified polymorphism (MASP) assay revealed that the UV radiation was epigenetically accompanied by DNA hypermethylation. The light-treated cells significantly displayed higher relative expression of the cannabidiolic| acid synthase (CBDAS) and delta9-tetrahydrocannabinolic acid synthase (THCAS) genes about 4-fold. The expression of the olivetolic acid cyclase (OAC) and olivetol synthase (OLS) genes exhibited an upward trend in response to the UV radiation. The light treatments also enhanced the proline content and protein concentration. The 4 h illumination was significantly capable of improving the cannabidiol (CBD) and delta-9-tetrahydrocannabinol (THC) concentrations, in contrast with 16 h. By increasing the illumination exposure time, the activity of the phenylalanine ammonia-lyase (PAL) enzyme linearly upregulated. The highest amounts of the phenylpropanoid derivatives were observed in the cells cultured under the radiation for 4 h. Taken collective, artificial UV radiation can induce DNA methylation modifications and impact biochemical and molecular differentiation in the cell suspensions in a photoperiod-dependent manner.


Asunto(s)
Cannabinoides , Cannabis , Cannabis/genética , Cannabis/química , Cannabinoides/farmacología , Dronabinol/farmacología , Metilación de ADN , Rayos Ultravioleta , Proliferación Celular
11.
Biochem Biophys Res Commun ; 710: 149890, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38608491

RESUMEN

Low level expression in Escherichia coli of the RecA protein from the radiation resistant bacterium Deinococcus radiodurans protects a RecA deficient strain of E. coli from UV-A irradiation by up to ∼160% over basal UV-A resistance. The protection effect is inverse protein dose dependent: increasing the expression level of the D. radiodurans RecA (DrRecA) protein decreases the protection factor. This inverse protein dose dependence effect helps resolve previously conflicting reports of whether DrRecA expression is protective or toxic for E. coli. In contrast to the D. radiodurans protein effect, conspecific plasmid expression of E. coli RecA protein in RecA deficient E. coli is consistently protective over several protein expression levels, as well as consistently more protective to higher levels of UV-A exposure than that provided by the D. radiodurans protein. The results indicate that plasmid expression of D. radiodurans RecA can modestly enhance the UV resistance of living E. coli, but that the heterospecific protein shifts from protective to toxic as expression is increased.


Asunto(s)
Deinococcus , Escherichia coli , Escherichia coli/genética , Escherichia coli/metabolismo , Deinococcus/genética , Deinococcus/metabolismo , Rec A Recombinasas/genética , Rec A Recombinasas/metabolismo , Plásmidos/genética , Rayos Ultravioleta , Reparación del ADN , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo
12.
Food Microbiol ; 121: 104518, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38637080

RESUMEN

Pulsed light (PL) inactivates microorganisms by UV-rich, high-irradiance and short time pulses (250 µs) of white light with wavelengths from 200 nm to 1100 nm. PL is applied for disinfection of food packaging material and food-contact equipment. Spores of seven Bacillus ssp. strains and one Geobacillus stearothermophilus strain and conidia of filamentous fungi (One strain of Aspergillus brasiliensis, A. carbonarius and Penicillium rubens) were submitted to PL (fluence from 0.23 J/cm2 to 4.0 J/cm2) and UVC (at λ = 254 nm; fluence from 0.01 J/cm2 to 3.0 J/cm2). One PL flash at 3 J/cm2 allowed at least 3 log-reduction of all tested microorganisms. The emetic B. cereus strain F4810/72 was the most resistant of the tested spore-forming bacteria. The PL fluence to 3 log-reduction (F3 PL) of its spores suspended in water was 2.9 J/cm2 and F3 UVC was 0.21 J/cm2, higher than F3 PL and F3 UVC of spores of B. pumilus SAFR-032 2.0 J/cm2 and 0.15 J/cm2, respectively), yet reported as a highly UV-resistant spore-forming bacterium. PL and UVC sensitivity of bacterial spores was correlated. Aspergillus spp. conidia suspended in water were poorly sensitive to PL. In contrast, PL inactivated Aspergillus spp. conidia spread on a dry surface more efficiently than UVC. The F2 PL of A. brasiliensis DSM1988 was 0.39 J/cm2 and F2 UVC was 0.83 J/cm2. The resistance of spore-forming bacteria to PL could be reasonably predicted from the knowledge of their UVC resistance. In contrast, the sensitivity of fungal conidia to PL must be specifically explored.


Asunto(s)
Esporas Bacterianas , Rayos Ultravioleta , Esporas Bacterianas/fisiología , Esporas Fúngicas , Luz , Bacterias , Agua
13.
Eur J Dermatol ; 34(1): 26-30, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38557455

RESUMEN

Gel manicures have become part of a popular personal care service in the last two decades due to increased longevity of the polish and the added strength to the nail plate. Prolonged exposure to nail ultraviolet (UV) lamps is required to cure the gel polish. Despite the increased use of UV nail lamps, there is limited consensus in the literature on the risk of skin malignancy associated with UV nail lamps. The objective of this article was to provide a systematic review of the risk of skin malignancy associated with the use of UV nail lamps and to synthesize evidence-based recommendations on their safe usage. A systematic review of the literature was conducted on the databases, Medline and Embase, in accordance with PRISMA guidelines. The search yielded 2,331 non-duplicate articles. Nine were ultimately included, of which three were case reports, one was a cross-sectional study, and five were experimental studies. The risk of bias per the Joanna Briggs Institute guidelines was high or unclear, likely due to the number of case reports included. Prolonged and repeated exposure to UV nail lamps may pose a low risk of skin cancer. It is important to note that the available evidence is weak, and patients should be informed about the limited data to make their own decisions. Dermatologists and other healthcare providers should be updated with the latest evidence to address patients' concerns about gel manicures and suggest practices which can effectively reduce the risk of cutaneous malignancy associated with gel manicures, such as the use of UV-blocking gloves or properly applied sunscreens.


Asunto(s)
Belleza , Neoplasias Cutáneas , Humanos , Estudios Transversales , Neoplasias Cutáneas/epidemiología , Neoplasias Cutáneas/etiología , Neoplasias Cutáneas/patología , Uñas/patología , Protectores Solares , Rayos Ultravioleta/efectos adversos
14.
Med Arch ; 78(2): 88-91, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38566862

RESUMEN

Background: Prolonged exposure to sunlight is known to induce photoaging of the skin, leading to various skin changes and disorders, such as dryness, wrinkles, irregular pigmentation, and even cancer. Ultraviolet A (UVA) and ultraviolet B (UVB) radiation are particularly responsible for causing photoaging. Objective: This study aims to identify and compare photoaging rat models exposed to UVA and UVB. Methods: This research method compared macroscopic (scoring degree of wrinkling) and microscopic (histology) signs and symptoms on skin samples of rat exposed to UVA and UVB for 4 weeks at a radiation dose of 840mJ/cm2. Results: The results of this study indicated that the degree of wrinkling was highest in rat skin exposed to UVB rays by 51% (p<0.05). UVB histological results showed that the epidermis layer (40 µm, p<0.05) was thickened and the dermis layer (283 µm, p<0.05) was thinned in the skin of mice exposed to UVB light. The UVB group, showed the density of collagen in the dermis with a mean value of 55% (p<0.05). Conclusion: Our results suggest that short-term exposure to UVB radiation (in the acute, subacute or subchronic phase) induces more rapid and pronounced damage to rat skin when compared to UVA radiation exposure.


Asunto(s)
Envejecimiento de la Piel , Ratas , Ratones , Animales , Piel/patología , Rayos Ultravioleta/efectos adversos , Luz Solar
15.
Fungal Biol ; 128(2): 1714-1723, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38575245

RESUMEN

The repair capacity of ultra-violet (UV) light DNA damage is important for adaptation of fungi to different ecological niches. We previously showed that in the soil-borne pathogen Fusarium oxysporum photo-reactivation dependent UV repair is induced at the germling stage and reduced at the filament stage. Here, we tested the developmental control of the transcription of photolyase, UV survival, UV repair capacity, and UV induced mutagenesis in the foliar pathogen Fusarium mangiferae. Unlike F. oxysporum, neither did we observe developmental control over photo-reactivation dependent repair nor the changes in gene expression of photolyase throughout the experiment. Similarly, photo-reactivation assisted reduction in UV induced mutagenesis was similar throughout the development of F. mangiferae but fluctuated during the development of F. oxysporum. To generate hypotheses regarding the recovery of F. mangiferae after UV exposure, an RNAseq analysis was performed after irradiation at different timepoints. The most striking effect of UV on F. mangiferae was developmental-dependent induction of translation related genes. We further report a complex response that changes during recovery time and involves translation, cell cycle and lipid biology related genes.


Asunto(s)
Desoxirribodipirimidina Fotoliasa , Fusarium , Rayos Ultravioleta , Daño del ADN , Ciclo Celular
17.
Int J Mol Sci ; 25(7)2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38612578

RESUMEN

Ultraviolet radiation (UVR) has various effects on human cells and tissues, which can lead to a variety of skin diseases and cause inconvenience to people's lives. Among them, solar dermatitis is one of the important risk factors for malignant melanoma, so prevention and treatment of solar dermatitis is very necessary. Additionally, liquiritin (LQ) has anti-inflammatory effects. In this study, we aimed to evaluate the anti-inflammatory and pro-wound healing effects of liquiritin carbomer gel cold paste (LQ-CG-CP) in vitro and in vivo. The results of MTT experiments showed no cytotoxicity of LQ at concentrations of 40 µg/mL and below and cell damage at UVB irradiation doses above 60 mJ/cm2. Moreover, LQ can promote cell migration. ELISA results also showed that LQ inhibited the elevation of the inflammatory factors tumor necrosis factor-α (TNF-α), interleukin-1ß (IL-1ß), and interleukin-6 (IL-6) after UVB irradiation. In the mouse model of solar dermatitis, 2% LQ-CG-CP showed the best therapeutic efficacy for wound healing and relief of itching compared to MEIBAO moist burn moisturizer (MEBO). What is more, the results of skin histopathological examination show that LQ-CG-CP promotes re-epithelialization, shrinks wounds, and promotes collagen production, thus promoting wound healing. Simultaneously, LQ-CG-CP reduced TNF-α, IL-1ß, and IL-6 expression. In addition, LQ-CG-CP was not observed to cause histopathological changes and blood biochemical abnormalities in mice. Overall, LQ-CG-CP has great potential for the treatment of solar dermatitis.


Asunto(s)
Resinas Acrílicas , Dermatitis , Flavanonas , Glucósidos , Quemadura Solar , Animales , Ratones , Humanos , Rayos Ultravioleta , Interleucina-6 , Factor de Necrosis Tumoral alfa , Cicatrización de Heridas , Interleucina-1beta , Antiinflamatorios
18.
Sci Rep ; 14(1): 8675, 2024 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-38622160

RESUMEN

Mitochondria are essential organelles in cellular energy metabolism and other cellular functions. Mitochondrial dysfunction is closely linked to cellular damage and can potentially contribute to the aging process. The purpose of this study was to investigate the subcellular structure of mitochondria and their activities in various cellular environments using super-resolution stimulated emission depletion (STED) nanoscopy. We examined the morphological dispersion of mitochondria below the diffraction limit in sub-cultured human primary skin fibroblasts and mouse skin tissues. Confocal microscopy provides only the overall morphology of the mitochondrial membrane and an indiscerptible location of nucleoids within the diffraction limit. Conversely, super-resolution STED nanoscopy allowed us to resolve the nanoscale distribution of translocase clusters on the mitochondrial outer membrane and accurately quantify the number of nucleoids per cell in each sample. Comparable results were obtained by analyzing the translocase distribution in the mouse tissues. Furthermore, we precisely and quantitatively analyzed biomolecular distribution in nucleoids, such as the mitochondrial transcription factor A (TFAM), using STED nanoscopy. Our findings highlight the efficacy of super-resolution fluorescence imaging in quantifying aging-related changes on the mitochondrial sub-structure in cells and tissues.


Asunto(s)
Mitocondrias , Rayos Ultravioleta , Humanos , Animales , Ratones , Microscopía Fluorescente/métodos , Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo , Células HeLa
19.
Nat Commun ; 15(1): 3247, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38622169

RESUMEN

Photo-crosslinking polymerization stands as a fundamental pillar in the domains of chemistry, biology, and medicine. Yet, prevailing strategies heavily rely on ultraviolet/visible (UV/Vis) light to elicit in situ crosslinking. The inherent perils associated with UV radiation, namely the potential for DNA damage, coupled with the limited depth of tissue penetration exhibited by UV/Vis light, severely restrict the scope of photo-crosslinking within living organisms. Although near-infrared light has been explored as an external excitation source, enabling partial mitigation of these constraints, its penetration depth remains insufficient, particularly within bone tissues. In this study, we introduce an approach employing X-ray activation for deep-tissue hydrogel formation, surpassing all previous boundaries. Our approach harnesses a low-dose X-ray-activated persistent luminescent phosphor, triggering on demand in situ photo-crosslinking reactions and enabling the formation of hydrogels in male rats. A breakthrough of our method lies in its capability to penetrate deep even within thick bovine bone, demonstrating unmatched potential for bone penetration. By extending the reach of hydrogel formation within such formidable depths, our study represents an advancement in the field. This application of X-ray-activated polymerization enables precise and safe deep-tissue photo-crosslinking hydrogel formation, with profound implications for a multitude of disciplines.


Asunto(s)
Hidrogeles , Rayos Ultravioleta , Masculino , Animales , Bovinos , Ratas , Hidrogeles/química , Rayos X , Polimerizacion , Rayos Infrarrojos
20.
J Hazard Mater ; 470: 134258, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38608588

RESUMEN

Photochemical active species generated from photosensitizers, e.g., dissolved organic matter (DOM), play vital roles in the transformation of micropollutants in water. Here, butanedione (BD), a redox-active moiety in DOM and widely found in nature, was employed to photo-transform naproxen (NPX) with peracetic acid (PAA) and H2O2 as contrasts. The results obtained showed that the BD exhibited more applicable on NPX degradation. It works in the lake or river water under UV and solar irradiation, and its NPX degradation efficiency was 10-30 times faster than that of PAA and H2O2. The reason for the efficient transformation of pollutants is that the BD system was proved to be a non-free radical dominated mechanism. The quantum yield of BD (Ф254 nm) was calculated to be 0.064, which indicates that photophysical process is the dominant mode of BD conversion. By adding trapping agents, direct energy transfer from 3BD* to NPX (in anoxic environment) or dissolved oxygen (in aerobic environment) was proved to play a major role (> 91 %). Additionally, the BD process reduces the toxicity of NPX and promotes microbial growth after irradiation. Overall, this study significantly deepened the understanding of the transformation between BD and micropollutants, and provided a potential BD-based process for micropollutants removal under solar irradiation.


Asunto(s)
Naproxeno , Fotólisis , Rayos Ultravioleta , Contaminantes Químicos del Agua , Naproxeno/química , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/efectos de la radiación , Transferencia de Energía , Peróxido de Hidrógeno/química , Ácido Peracético/química , Procesos Fotoquímicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...